

FMSS01S0

SENSOR DE UMIDADE E TEMPERATURA

<u>Leia as instruções de segurança e</u> <u>operação</u> antes do comissionamento!

Observação: As representações nem sempre correspondem exatamente ao original. Não há reivindicações legais decorrentes de informações fornecidas por nós por engano. As informações técnicas podem ser alteradas sem aviso prévio.

1.	Início rápido	3
2.	Princípios de desempenho e medição	4
2.1	Geral	4
2.2	Medição de temperatura	4
2.3	Medição de umidade	4
2.3	.3.1 Umidade relativa	4
2.4	Contador de horas de funcionamento	4
3.	Especificações técnicas	5
3.1	Dados gerais	5
3.2	Dimensões	5
4.	Montagem	6
5.	Conexão elétrica	7
5.1	Atribuição de pinos do sensor	7
5.2	Saídas de corrente analógica (420 mA) - medição sem resistência de carga	7
5.3	Saídas de corrente analógica (420 mA) - medição com resistência de carga	8
5.3	.3.1 Resistência à carga	8
6.	Comunicação	9
6.1 I	Interface serial (RS232)	9
6.3	.1.1 Parâmetros da interface	9
6.2 L	Lista de comandos	9
6.2	.2.1 Comando de leitura	9
6.2	.2.2 Comandos de gravação	9
6.2	.2.3 Configuração das saídas de corrente analógica	10
6.3 9	Software do sensor FMSS01S0	10
7.1	Teste de função usando um PC	13
7.2	Teste de função por meio das saídas de corrente analógicas	13
8. Valo	ores de referência	13
9.	Manutenção e descarte	13
10.	Solução de problemas	14
11.	Acessórios	15

1. Início rápido

A seção a seguir descreve as etapas para o comissionamento inicial do sensor de umidade FMSS01S0 a ser realizado no PC. Para essa finalidade, são necessários os seguintes componentes:

- 1. PC / laptop com conexão RS232 ou, alternativamente, com uma porta USB, que serve como um computador de medição
- 2. Sensor de umidade FMSS01S0 (Código: 04.006.00188)
- 3. Cabo do sensor FMSA04S0 (Código: 04.006.00191)
- 4. Fonte de alimentação, incluindo pluque de dispositivo frio FMSA01S0 (Código: 04.006.00190)
- 5. Software do sensor FMSS01S0 (o download pode ser feito em www.filtrec.com)
- 6. Além disso, quando conectado via USB: Conversor USB-RS232 FMSA05S0 (Código: 04.006.00194)

Os componentes devem ser preparados da seguinte forma:

- A) Instalação do software
 - 1. Não é necessário instalar. Basta copiar o arquivo "FMSS01S0_Sensor_Software.exe" para o seu PC. Os sistemas operacionais Windows são compatíveis.
- B) Instalação do software do driver para o conversor USB-RS232 com aquisição de dados via USB (se você não usar um conversor, continue com o ponto D)
 - 2. Agora, conecte o conversor USB-RS232 ao seu PC/portátil.
 - 3. Se o conversor USB-RS232 não for conhecido pelo PC, o driver correspondente deverá ser instalado.
- C) Conexão do sensor com aquisição de dados via USB
 - 4. Conecte o cabo do sensor ao conector M12 no sensor.
 - 5. Conecte o conector D-Sub de 9 pinos do cabo à porta serial apropriada do conversor USB-RS232.
 - 6. Conecte a fonte de alimentação e o cabo do sensor.
 - 7. Agora, conecte adequadamente a fonte de alimentação à tensão da rede elétrica por meio do pluque do dispositivo frio. Seu sensor está pronto para operação.
- D) Conexão do sensor com aquisição de dados via RS232
 - 8. Conecte o cabo do sensor ao conector M12 no sensor.
 - 9. Conecte o conector D-Sub de 9 pinos do cabo à porta serial apropriada do seu PC/portátil.
 - 10. Conecte a fonte de alimentação e o cabo do sensor.
 - 11. Agora, conecte adequadamente a fonte de alimentação à tensão da rede elétrica por meio do plugue do dispositivo frio. Seu sensor está pronto para operação.
- E) Iniciando o software
 - 12. O software pode ser iniciado com um clique duplo no arquivo "FMSS01S0_Sensor_Software.exe"

A lista a seguir descreve os principais métodos usados para conectar o sensor e as peças necessárias:

- 1) Sensor para porta USB
 - a. código FMSA01S0, P/N 04.006.00190, fonte de alimentação universal
 - b. código FMSA04S0, P/N 04.006.00191, cabo de dados para conexão com o computador
 - c. código FMSA05S0, P/N 04.006.00194, adaptador USB serial RS232
- 2) Sensor para porta RS232
 - a. código FMSA01S0, P/N 04.006.00190, fonte de alimentação universal
 - b. código FMSA04S0, P/N 04.006.00191, cabo de dados para conexão com o computador
- 3) Sensor para extremidades abertas
 - a. código FMSA03S0, P/N 04.006.00192, cabo de dados com extremidades abertas

Para obter uma lista completa e uma descrição de todos os acessórios disponíveis, consulte a seção 11 deste manual.

2. Princípios de desempenho e medição

2.1 Geral

O sensor de umidade FMSS01S0 serve para medir alterações nas propriedades de meios hidráulicos e lubrificantes. Os valores medidos correspondentes são registrados continuamente e podem ser emitidos por meio de uma interface serial ou de duas saídas de corrente de 4 a 20 mA.

O sensor detecta as duas características físicas a seguir

- temperatura
- umidade relativa

2.2 Medição de temperatura

Para medir a temperatura do óleo, é usado um sensor de resistência de platina PT1000. A faixa de medição se estende de -20 °C a +120 °C. Como o sensor de resistência está diretamente no óleo, a condutividade do meio circundante não pode exceder o valor de 3 mS/m.

2.3 Medição de umidade

A medição da umidade relativa ϕ é realizada por meio de um transdutor capacitivo. O sensor de umidade capacitivo detecta a umidade relativa na faixa entre 0% e 100%. No caso de água livre ou emulsões, o sensor indica 100%.

2.3.1 Umidade relativa

A umidade relativa ϕ é entendida como a razão entre a quantidade real de óleo contido (ρ_w) e a quantidade máxima possível de água dissolvida no limite de saturação (ρ_w , ρ_w).

$$\varphi = \frac{\rho_{W}}{\rho_{W \max}} .100 \tag{2-1}$$

Como o limite de saturação, ou seja, a umidade absoluta máxima absorvível $\rho w_{,max}$, depende muito da temperatura, a umidade relativa varia com a temperatura, mesmo quando a umidade absoluta permanece constante. Normalmente, os óleos absorvem mais água com o aumento da temperatura.

2.4 Contador de horas de operação

O sensor tem um contador integrado de horas de operação cujos valores continuam presentes mesmo após uma falha de energia. Após a interrupção, o contador reinicia a contagem com o último valor registrado (armazenado) antes da interrupção.

3. Especificações técnicas

3.1 Dados gerais

Dados do sensor	Tamanho	Unidade	
Pressão operacional máxima	50	bar	
Condições operacionais Temperatura ¹ Umidade relativa ¹	-20 120 0 100	_	
Líquidos compatíveis	ésteres sintéticos (Final polial quile no glicóis		
Materiais úmidos		esina de poliuretano, resina epóxi, níquel químico/ouro (ENIG), (Sn60Pb40, Sn96,5Ag3Cu0,5NiGe), óxido de alumínio, 550)	
Classe de proteção ²	IP67		
Fonte de alimentação ³	9 33	V	
Consumo atual	Máx. 60	mA	
Saída Saída de corrente (2x) ⁴ Saída de corrente de precisão ⁵ Interfaces	420 ±2 RS232	mA % -	
Dimensões de conexão Conexão rosqueada Torque de aperto rosca de conexão Conexão elétrica Torque de aperto Conector M12	G ³ / ₄ 45 ±4,5 M12x1, 8 polos 0,1	Pol. Nm - Nm	
Faixa de medição Umidade relativa Temperatura	0100 -20120	% r.H. ℃	
Resolução de medição Umidade relativa Temperatura	1 0,1	% r.H K	
Precisão de medição ⁶ Umidade relativa (1090 %) ⁷ Umidade relativa (<10%, >90%) ⁷ Temperatura	±3 ±5 ±2	% r.H. % r.H. K	
Tempo de resposta da medição de umidade (0 a 100 %)	<1	min	
Peso	115	g	

⁽¹⁾ Fora da faixa de medição especificada, possivelmente não há valores de medição plausíveis a serem esperados

3.2 Dimensões

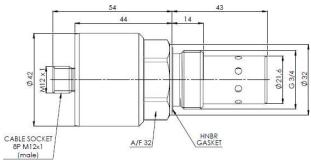


Figura 1: Desenho das dimensões do FMSS01S0

² Com conector aparafusado

³ Desligamento automático em U <8 V e U >36 V; com impulsos de queda de carga acima de 50 V, deve ser fornecida uma proteção externa

⁴ As saídas IOut1 e IOut2 podem ser configuradas livremente (consulte o manual de operação)

⁵ Em relação ao sinal analógico de corrente (4 ... 20 mA)

⁶ Calibração de trabalhos

⁷ Calibrado ao ar em temperatura ambiente

4. Montagem

O sensor foi projetado com uma rosca G¾ (BSP). O ideal é que, em circuitos hidráulicos, o sensor seja instalado no tanque ou na linha de retorno. Nos redutores com descarga forçada, o sensor também pode ser na linha de purga. Em geral, ao colocar o sensor, as pressões e temperaturas máximas permitidas devem ser consideradas (consulte o Capítulo 3).

Monte o sensor em uma posição preparada no tanque ou na linha de retorno. Para a instalação na linha de retorno, também pode ser usado o adaptador de bloco da linha de retorno (FMSA06SO, código 04.006.00375). A vedação do lado do óleo é fornecida por um anel de vedação de perfil.

Para garantir uma vedação adequada, a superfície de vedação para a inserção do sensor deve ser especialmente preparada e a rugosidade máxima deve ser $_{Rmax} = 1,6$. O torque de aperto do sensor é de 45 Nm \pm 4,5 Nm.

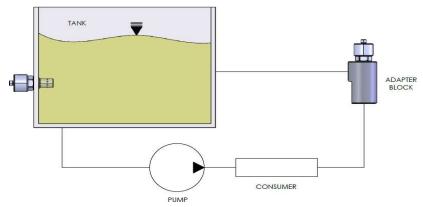


Figura 2: Montagem de um sensor em um tanque de óleo ou usando o bloco adaptador

Para garantir a operação adequada, respeite as diretrizes a seguir e a posição de montagem e localização do sensor:

- Geralmente, a medição deve ser realizada em um local que seja característico do sistema a ser monitorado.
- O sensor deve ser instalado em um local em que o meio esteja suficientemente misturado.
- Idealmente, com a montagem no tanque, o sensor deve ser colocado nas proximidades da linha de retorno ou de descarga.
- Certifique-se de que o sensor esteja completamente coberto de óleo em todas as condições de operação do sistema. Observe especialmente o movimento de óleo no tanque em uma possível posição inclinada. Deve-se evitar a formação de espuma no tanque.
- Quando instalado na linha de retorno ou na linha de descarga, é preciso garantir que a linha de descarga não esteja vazia em nenhuma situação operacional.
- Para evitar influências térmicas na medida do possível, o sensor não deve ser instalado nas proximidades de peças e componentes quentes (por exemplo, motor).
- Quando o óleo é misturado de forma insuficiente no tanque, a água livre pode se depositar no fundo. O sensor na posição 1, portanto, não detectaria a água livre. Nesse caso especial, recomenda-se posição de montagem 2.

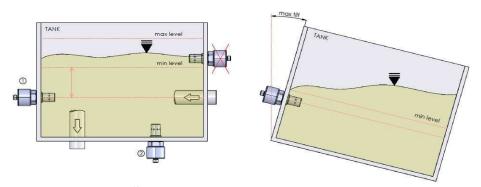


Figura 3: Exemplo de instala $c\tilde{ao}$ de montagem correta e incorreta do sensor em um tanque de $ilde{d}$ eo

5. Conexão elétrica

O dispositivo deve ser instalado por um eletricista qualificado. Siga as normas nacionais e internacionais para instalação de equipamentos elétricos.

Alimentação de tensão de acordo com EN 50178, SELV, PELV, VDE 0100-410 / A1.

Para a instalação, desconecte o dispositivo da alimentação e conecte-o da seguinte forma:

5.1 Atribuição de pinos do sensor

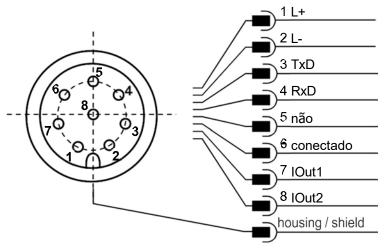


Figura 4: Atribuição de pinos com vista em plana de face do sensor

A tensão operacional permitida está entre 9V e 33V CC. O cabo do sensor deve ser blindado. Para atingir a classe de proteção IP67, somente plugues e cabos adequados podem ser usados. O torque de aperto do plugue é de 0,1 Nm.

A configuração padrão fornece a temperatura do óleo no canal 1 (IOut1) e a umidade relativa no canal 2 (IOut2). É possível alterar a atribuição do canal e isso está descrito nos Capítulos 6.2.3 e 6.3

5.2 Saídas de corrente analógica (4...20 mA) - medição sem resistência de carga

A medição da corrente deve ser realizada com um amperímetro adequado, de acordo com a próxima figura.

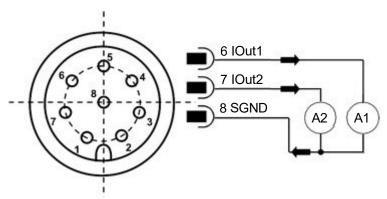


Figura 5: Medição das saídas analógicas 4...20 mA sem resistência de carga

Por padrão, a temperatura é exibida nas saídas atuais em um intervalo entre -20 °C e 120 °C e a umidade relativa entre 0 e 100 %. Esses limites são fixos e não podem ser alterados. A escala da saída de corrente é linear. A atribuição do valor de corrente medido ao parâmetro (umidade e temperatura) pode ser feita da seguinte forma

IOut [mA]	4	12	20
T [°C]	-20	50	120
RH [%]	0	50	100

Tabela 1: Escala das saídas de corrente analógica

5.3 Saídas de corrente analógica (4...20 mA) - medição com resistência de carga

Para medir as correntes de ambas as saídas analógicas de corrente, uma resistência de carga deve ser conectada a cada saída, conforme mostrado na Figura 6. A resistência de carga deve estar, dependendo da tensão de alimentação, entre 25 Ohm e 625 Ohm. Com uso de um voltímetro, a tensão em cada resistor pode agora ser medida.

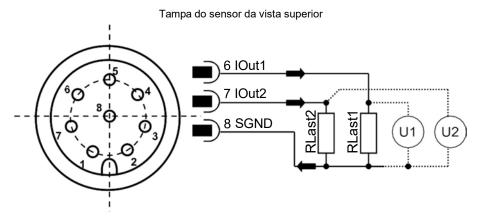


Figura 6: Conexão das resistências de carga para medir as saídas analógicas de 4...20 mA

Para determinar os parâmetros correspondentes (umidade e temperatura) a partir das tensões atuais, as tensões com fórmulas da Tabela 2 devem ser convertidas adequadamente.

Tamanho da saída	Equação	Fórmula
Τ [℃]	$T \mid C = \frac{U \mid V}{R[W]} \cdot 8750 \mid C \mid A \mid -55 \mid C \mid$	(5-1)
RH em %	$RH[\%] = \frac{U[\]V}{R[W]} \cdot 6250 \ [\%/\ A] - 25 \ [\%]$	(5-2)

Tabela 2: Cálculo dos parâmetros de saída das saídas de corrente analógicas medidas com resistência de carga

5.3.1 Resistência à carga

A resistência de carga não pode ser escolhida arbitrariamente. Ela deve ser ajustada de acordo com a tensão de alimentação do sensor. A resistência de carga máxima pode ser calculada com a fórmula (5 -3). Na Tabela 3, estão listadas as resistências de carga para diferentes tensões.

$$_{Rmax}[\Omega] = _{Utilização}[V] - 25[\Omega/V] - 200[\Omega]$$
 (5-3)

$_{Rmax}[\Omega]$	Usupply [V]
25	9
100	12
200	16
100 200 400 625	24
625	33

Tabela 3: Determinação da resistência da carga como uma função da tensão de alimentação

6. Comunicação

6.1 Interface serial (RS232)

O sensor de umidade FMSS01S0 é fornecido com uma interface serial, por meio da qual pode ser lido e configurado. Para isso, é necessário um PC e um programa de terminal apropriado ou um software de leitura (Capítulo 6.3).

Primeiro, é necessário selecionar uma porta COM livre existente em seu computador para conectar o sensor. Um cabo de comunicação apropriado para a conexão serial entre o sensor e o computador/controlador está disponível sob o código FMSA04S0 (código: 04.006.00191). Como alternativa, também temos disponível um cabo de dados com extremidades abertas com o código FMSA03S0 (código: 04.006.00192).

Caso o computador não tenha uma porta COM padrão, é possível usar placas de interface serial ou conversores USB-para-serial (FMSA05S0, código: 04.006.00194)

6.1.1 Parâmetros da interface

Taxa de baud: 9600
Bits de dados: 8
Paridade: nenhuma
Bits de parada: 1

Controle de fluxo: nenhum

6.2 Lista de comandos

Abaixo, estão listados todos os comandos de interface para comunicação com o sensor. Eles podem ser transferidos para o sensor usando um programa de terminal como, por exemplo, o Microsoft Windows Hyper Terminal. Por padrão, esse programa pode ser encontrado em Iniciar / Programas / Acessórios / Comunicação (não a partir do Windows 2010).

6.2.1 Comando de leitura

#	Formato da instrução	Significado	Formato de retorno
1	RVal[CR]	Leitura de todas as medições	\$RH:xx[%];AH:x[ppm];T:xxx.x[C];PCBT:xxx.x[C]; Time:x.xxxx[h];CRC:x[CR][LF]
2	RID[CR]	Leitura da identificação	\$FILTREC;FMSS01S0;SN:xxxxxx;SW:x.x.xx; CRC:x[CR][LF]
3	RCon[CR]	Leitura dos parâmetros de configuração	\$AO1:x;AO2:x;AHScal:x;CRC:x[CR][LF]

Tabela 4: Comunicação serial: comandos de leitura

6.2.2 Comandos de gravação

#	Formato da instrução	Significado	Formato de retorno
1	SAO1x[CR]	Atribuição da primeira saída de corrente com um valor medido correspondente. Padrão: Temperatura (consulte os Capítulos 6.2.3 e 6.3)	AO1:x[CR][LF]
2	SAO2x[CR]	Atribuição da segunda saída de corrente com um valor medido correspondente. Padrão: Umidade relativa (consulte os Capítulos 6.2.3 e 6.3)	AO2:x[CR][LF]
3	CTime[CR]	Exclui o contador de horas de operação	OK[CR][LF]

Tabela 5: Comunicação serial - comandos de gravação

Observação:

[CR]= [Carriage Return (0xD)] [LF]= [Linefeed (0xA)]

6.2.3 Configuração das saídas de corrente analógica

As duas saídas analógicas de corrente são ajustadas na fábrica. No canal 1, é emitida a temperatura e, no canal 2, a umidade relativa. Entretanto, o sensor permite alterar os parâmetros de saída padrão. Para isso, use o software do sensor FMS01S0 (Capítulo 6.3) ou, se você usar um programa de terminal como, por exemplo, o Microsoft Windows Hyper Terminal, escreva os seguintes comandos: "SAO1x[CR]" e "SOA2x[CR]" com o código numérico x correspondente.

Código numérico x	Parâmetro
0	Temperatura (T)
1	Umidade relativa (RH)
100	Saída fixa em 4 mA
101	Saída fixa em 12 mA
102	Saída fixa em 20 mA

Tabela 6: Código numérico para os parâmetros de saída das saídas de corrente analógica

6.3 Software do sensor FMSS01S0

Se o sensor estiver conectado a um PC e for alimentado com energia, a comunicação com o sensor é possível usando o software do sensor FMSS01S0. Esse software pode ser baixado do site www.filtrec.com. O software é um programa baseado em C# para leitura, exibição, armazenamento de dados e alteração da atribuição de canais (IOut1, IOut2) para o sensor FMSS01S0. Os sistemas operacionais Windows são compatíveis. O software pode ser iniciado com um clique duplo no arquivo FMSS01S0_Sensor.exe. Nenhum outro software deve ser instalado. Ao iniciar o programa, é exibida uma janela com interface gráfica do usuário (consulte a Figura 7).

Figura 7: Interface gráfica do usuário

A interface do usuário pode ser dividida nos 5 setores a seguir:

Setor1: Comando básico

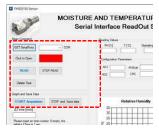


Figura 8: Secotor 1- Comando básico

Para iniciar o processo de comunicação com o sensor, você deve selecionar a porta de comunicação clicando no botão "GET Serial Port" e, em seguida, selecionar a COM correta no menu suspenso. Em seguida, clique no botão "Click to Open" (Clique para abrir) para abrir a porta de comunicação selecionada. O led muda de cor de vermelho para verde. Se você precisar fechar a porta de comunicação, clique no botão "Click to Close" (Clique para fechar).

Figura 9: Iniciando a comunicação

Se a porta de comunicação estiver aberta, é possível iniciar a leitura dos dados de temperatura e umidade relativa, bastando clicar no botão "READ". Nesse caso, os valores dos parâmetros são exibidos no lado direito da interface do usuário, no Setor 2. Esses valores são atualizados a cada 60 segundos. Para interromper a leitura, clique em "STOP READ".

Clicando no botão "Delete Time", é possível zerar o contador de horas de operação do sensor. As horas de operação são exibidas no lado direito da interface do usuário, no Setor 2.

Setor2: Leitura de valores

Figura 10: Setor 2 - Valores de leitura

Nesse setor, são exibidos os valores de leitura de umidade relativa RH, temperatura e tempo de operação obtidos quando o botão "READ" é clicado (consulte o Setor 1). Além disso, são mostrados alguns parâmetros de configuração e um código de identificação do sensor usado. Esses valores também ficam visíveis somente depois que o botão READ é clicado.

Setor3: Gráfico e salvamento de dados

Figura 11: Setor 3 - Gráfico e salvamento de dados

Nesse setor, há dois botões. O primeiro, "Start Acquisition", ativa a aquisição da umidade relativa RH e temperatura, atualizando os valores na frequência especificada campo "ΔTime [min]" ou a cada 60 segundos se o campo "ΔTime [min]" for deixado em branco. Quando a aquisição começa, o resultado é exibido nos dois gráficos à direita no setor 4. Depois que o botão "Start Acquisition" (Iniciar aquisição) for clicado, uma caixa de diálogo será exibida (Figura 12) para identificar o diretório onde salvar os dados. Se você preferir não selecionar uma pasta específica, os dados salvos automaticamente na pasta padrão definida como "Meus documentos" em seu sistema. Essa pasta é normalmente usada para armazenar documentos pessoais e pode ser acessada facilmente a partir de vários aplicativos. Observe que é recomendável escolher um diretório adequado para salvar os dados para garantir o fácil acesso e a organização dos seus arquivos. Se o botão "STOP Acquisition" for clicado, a aquisição dos dois parâmetros será interrompida. Os dados são salvos como arquivos de texto (.txt)

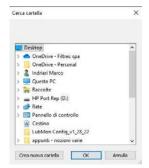


Figura 12: caixa de di álogo

Setor 4: Gráficos

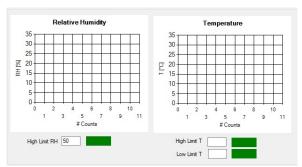


Figura 13: Setor 4 - Gráficos

Nesse setor, os gráficos exibem os parâmetros adquiridos (consulte o Setor 3). Além disso, é possível definir:

- um limite superior para a umidade relativa. O valor limite padrão é 50%. Quando a umidade relativa é maior do que esse valor, o led muda de cor de verde para vermelho, uma etiqueta de aviso é exibida e uma nota é escrita no arquivo de texto salvo.
- -um limite superior e um limite inferior para a temperatura. Se a temperatura for superior ou inferior a esses limites, o led correspondente mudará de cor, de verde para vermelho, um rótulo de aviso será exibido e uma nota será gravada no arquivo de texto salvo. Se esses campos forem deixados em branco, nenhum limite será aplicado e nenhum sinal de aviso será exibido.

Setor 5: Comando para configurar a saída analógica

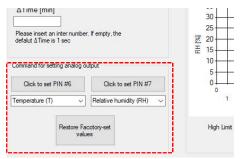


Figura 14: Setor 5 - Comando para configurar a saída analógica

Nesse setor, é possível alterar a configuração de IOut1 e IOut2 (consulte o Capítulo 5.1). No menu suspenso, é possível selecionar entre Temperatura (T), Umidade relativa (RH), saída fixa em 4 mA, em 12 mA ou em 20 mA e, clicando no botão correspondente, é possível atribuir o parâmetro selecionado ao pino selecionado. Ao clicar no botão "Restore Facory-set values", é possível redefinir a atribuição de fábrica, ou seja, a temperatura para PIN#6 (IOut1) e a umidade relativa para o PIN#7 (IOut 2)

Arquivo de texto:

Figura 15: Exibição dos dados de medição no arquivo de registro

A Figura 15 mostra um exemplo de arquivo de texto de dados. Os arquivos de texto podem ser abertos com qualquer editor de texto. No cabeçalho, há algumas informações gerais sobre o sensor, quando a aquisição foi iniciada e quando a aquisição foi interrompida. Além disso, há algumas observações sobre os limites excedentes (consulte o setor 4). Para representação gráfica, os dados podem ser exportados em um programa de planilha padrão (por exemplo, Microsoft Excel).

7. Comissionamento

7.1 Teste de função usando um PC

Agora, um técnico eletricista deve conectar o sensor à fonte de alimentação. Conecte o sensor por meio da interface serial (RS232) a um PC e inicie o software do sensor FMSS01S0 (consulte o Capítulo 6.3). Os três LEDs à direita da janela do software devem mudar de cor de vermelho para verde quando o botão "READ" for clicado.

7.2 Teste de função por meio das saídas de corrente analógicas

Peça a um técnico eletricista que conecte o sensor à fonte de alimentação. Agora, verifique as saídas de corrente analógica (consulte o Capítulo 5). O valor da corrente não deve ser inferior a 4 mA± 0,2 mA e nem superior a 20 mA± 0,2 mA. A relação entre a tensão de alimentação e a resistência da carga deve ser observada (consulte o Capítulo 5.3.1).

8. Valores de referência

Nos sistemas hidráulico, a água pode causar danos, portanto, tudo deve ser feito para garantir que o teor de água seja o mais baixo possível. Recomendamos manter os níveis de umidade relativa abaixo de 50%.

% r.h.	Medida
050	Nenhuma ação necessária
50100	Tome medidas para reduzir o teor de água. No caso de necessidade contato com a Filtrec. (info@filtrec.com.br)

Tabela 7: valores de referência de r.h. e contramedidas

9. Manutenção e descarte

De tempos em tempos, verifique o sensor. Se houver algum depósito, limpe-o cuidadosamente enxaguandoo com óleo fresco ou álcool isopropílico. Deixe a unidade secar por alguns minutos antes de montá-la.

Em caso de danos, substitua a unidade. Não é possível consertar a unidade. Para o descarte, adote uma maneira ecologicamente correta de acordo com as regulamentações nacionais.

Em caso de devolução, certifique-se de que a unidade esteja livre de sujeira, especialmente de substâncias perigosas e tóxicas. Para o transporte, use somente embalagens apropriadas.

10. Solução de problemas

Erro: Sem comunicação serial e saídas de corrente analógicas< 4mA	
Motivo	Medida
O cabo não está conectado corretamente	Primeiro, verifique a conexão elétrica correta do sensor ou do cabo de dados e de alimentação. Esteja ciente de que a atribuição de conexão prescrita.
A tensão de operação está fora da faixa prescrita	Opere o sensor na faixa entre 9 V e 33 V CC.

Erro: Sem comunicação serial	
Motivo	Medida
Porta de comunicação incorreta selecionada	Verifique e corrija a escolha da porta de comunicação (por exemplo, COM1)
Cabo errado ou com defeito	Se possível, use cabos de dados FILTREC

Erro: Medição incorreta das saídas de corrente analógica	
Motivo Medida	
Um parâmetro incorreto é emitido	Corrija a atribuição dos valores medidos às saídas atuais.

Tabela 8: Raz \tilde{o} es para erros e contramedidas

11. Acessórios

Descrição	Número pedido	Código	Desenho
Fonte de alimentação universal Faixa de entrada: 100240VAC 50/60Hz Tensão de saída: 24VDC / máx. 0,63A / 15W Faixa de temperatura em operação: 040°C Compatível com o cabo de dados FMSA04S0 Linha de alimentação: Cabo de alimentação Euro de 2 polos, 1,5 m	FMSA01S0	04.006.00190	
Cabo de dados para conexão com o computador Lado 1: M12 de 8 polos, ângulo de 90°, IP67 Lado 2: Conector D-Sub de 9 polos com plugue CC separado para fonte de alimentação Comprimento: 5 m Faixa de temperatura - 25°C90°C	FMSA04S0	04.006.00191	
Adaptador USB - RS232 serial Lado 1 (PC): Plugue USB A Lado 2 (periferia): Conector D-Sub de 9 polos Comprimento: 1,8 m	FMSA05S0	04.006.00194	
Cabo de dados com extremidades abertas Lado 1: M12 de 8 polos, ângulo de 90°, IP67 Lado 2: aberto Comprimento: 5 m, blindado Faixa de temperatura -25 °C90 °C Resistente a óleo	FMSA03S0	04.006.00192	
Conector do sensor M12 de 8 polos, reto, IP67 Adequado para cabos com diâmetro de 68 mm Faixa de temperatura - 20°C 85°C Resistente a óleo	FMSA02S0	04.006.00193	
Bloco adaptador do sensor para instalação na tubulação Conectores de linha ¾" Material: Alumínio Faixa de pressão: até 50 bar Resistente a óleo	FMSA06S0	04.006.00375	

Tabela 9: Acessórios

As informações técnicas podem ser alteradas sem aviso prévio

FILTREC LATAM
Itajaí – Santa Catarina - BRASIL
Avenida Vereador João Abrahão Francisco, 4200 - www.filtrec.com
Tel. +55 047 2125-0151
E-Mailinfo@filtrec.com.br

MUM02 - REV. 10/23 - LATAM 2025